
HEP/Nix Packages.

BV

[2015-08-15 Sat 09:16]

1 Nix in a Nut Shell

Nix is the package manager used by NixOS and can be used entirely from
user space on POSIX'sh OSes. Its basic design is unique in the realm of
software packaging (there is a similar, derived implementation called Guix
which di�ers only in the con�guration language used).

To begin to understand Nix, it is useful to compare and contrast it to
systems which are already familiar to some in the HEP community which is
done in the following sections.

1.1 The Nix Package Store

In contrast with other systems, Nix does not interleave the �les of a package
under a single-rooted �le-system hierarchy such as the FHS (ie, the usual
/usr/{lib,bin,include}) like Debian GNU/Linux nor does it produce iso-
lated bundles which leverage a base �le-system hierarchy such as in Mac OS
X.

The Nix package store contains the directly installed �le contents of Nix
packages. It is somewhat similar to the "product database" of UPS, the
module area of Environment Modules and the LCGCMT "externals" area.
Some common features include:

� a well de�ned root directory containing the �les of the installed pack-
ages.

� a per-package directory under this root named with identi�ers used to
later build a working environment.

� an FHS-like layout within each package directory.

1

https://nixos.org/nix/
http://www.gnu.org/software/guix/
http://www.pathname.com/fhs/
https://www.fnal.gov/docs/products/ups/ReferenceManual/html/overview.html#32926
http://modules.sourceforge.net/


The Nix package store di�ers from these other systems in some important
ways:

� There is a single directory root common among all compatible in-
stallations. The prevailing convention is to place the store under /nix/.
This must be a mount, not just a symlink. Other root directory con-
ventions may be chosen but all packages must be built for that mount
point.

� While a package's directory is named with the package name, version
and other human-oriented identi�ers it also contains a cryptographic
hash formed from the dependencies required to build that package.

� A package directory is self-contained in that all �les associated with
the installation of that package reside in the directory (the others allow
for, and in the case of UPS in practice, violate this).

These unique aspects of the Nix package store allow for a number of
bene�cial features:

� Packages can be shared in binary form with robust dependency reso-
lution.

� Binary executable and library �les do not need environment variables
to locate dependencies due to the common path.

� Packages are precisely reproducible from source and binary can be
validated. This allows for a wide pool of package builders to share
binary packages with a wide community of users. This additional level
of veri�cation and validity is fully lacking in any other packaging system
known to be used in HEP.

1.2 User Environment

Another unique aspect of Nix packages is how a user environment is pro-
duced. To speak generally, a user environment is created as some aggrega-
tion or view of a larger package store. This aggregation can be performed in
a number of ways and typically relies partly on environment variables and
the �le system.

In the case of conventional GNU/Linux or Mac OS X user environments,
the default environment is provided by the FHS-like directory hierarchy typ-
ically rooted in /usr and brief settings of a small number of environment

2



variables such as PATH to �nd executable �les and relying on conventions
"baked" into the loader to �nd libraries.

The packaging commonly used in HEP layers on top of this OS-default
aggregation which relies heavily both on environment variable settings and
some �le system organization as described in the previous section. The envi-
ronment settings typically extend the standard PATH-like variables, typically
with one additional component for every package or project being aggre-
gated. Many package require their own PATH-like variables (eg PYTHONPATH)
or single-location variables (eg ROOT's ROOTSYS) to be extended or set. Also
typical is to set one or more "standard" variables for every single package
"just in case they might be needed" (eg CMT and UPS set a <PACKAGE>_DIR
variable).

Heavily relying on environment variable-based aggregation is problematic
for a few reasons:

� it is ephemeral, existing only in the shell session.

� its construction is ill-de�ned, depending on what setup scripts were
run and in what order.

� its often confusing to users.

� it can lead to inconsistencies, particularly during development.

Nix takes a more �le-system-oriented approach and NixOS is entirely
based on this approach such that the entire OS-level environment is sub-
sumed. With Nix, a user may have one or more "pro�les". Each pro�le
provides the �les for the working environment and which are aggregated
into a single directory that follows an FSH-like convention. The �le-system
hierarchy in the pro�le is recorded through symbolic links into the Nix pack-

age store.
This �le-system aggregation has a number of bene�ts:

� the pro�le directory provides a tangible record of the user environment.

� user environment variables require minimal modi�cation (single entry
added to PATH-like variables).

� pro�les can be populated in an indirect manner allowing site-wide or
group-wide release de�nitions (eg, de�ning through a "pro", "dev" etc
pattern, or through release de�nitions).

� atomic upgrades and rollback patterns are trivial.

3



� pro�le directories at a site may be automatically queried by site ad-
ministrators to determine what packages are actually in use and which
can be safely purged.

� pro�les are amenable to chroot or similar containment.

1.3 Package De�nition

Another way in which Nix is unique among the systems in use in HEP is
that it is comprehensive in providing for con�guration management, build au-
tomation, package distribution and installation and user environment man-
agement. None of the other systems managed, by themselves, cover this
necessary ground.

Nix package de�nitions are short text �les in the Nix packaging language.
They provide parameters interpreted by functionality built in to Nix or pro-
vide any special shell commands needed for less common build methods.
These speci�cations are highly portable due to leveraging a well character-
ized build environment - that of all the other Nix packages. This allows for a
huge amount of shared e�ort not obtainable by other systems. For example,
one individual or small group can maintain the Nix package speci�cation for
ROOT and the entire world can bene�t from its use.

2 Impedance mismatches between Nix and HEP

At the heart of Nix is the package store and its contents are produced based
on the other packages it already contains. Because of the hashing mechanism
the location of this store is "baked" into the package names and binaries are
built against their dependencies located under the package store.

The implication of this is that any package can be considered part of a
"package realm" de�ned by the mount point. An apparently trivial change
of this mount point requires rebuilding all packages. The bene�t of accepting
this limitation is that packages need not be /relocatable/1 and that binaries
built by one individual can be shared and need not be built by any other
individual using the same mount point.

1The term "relocatable" is used in some systems like UPS. There, it takes a weak

de�nition as the relocation is only possible through setting user environment variables.

Nix provides a PatchELF tool with which one can produce binary executable and library

�les which can be truly relocated. It works by rewriting the path strings that are compiled

into the binaries. If rewritten to their relocated locations the environment setting that

must otherwise be modi�ed need not be.

4



For NixOS installations this limitation is invisible as the system itself
relies on the package store to be found at the /nix root. However, essentially
all HEP computer installations do not run NixOS and thus a common Nix
package store mount must be created in context of whatever native policies
exist. The main issues with this are:

� many HEP users do not have administrator privileges on the computer
systems they use.

� HEP clusters (and the wider Grid) have local policies driven by various
forces and negotiations are needed to established a shared /nix mount.

There are two known solutions to this issue.
The �rst is to give up on a global package store mount point and leave it

to each installation to pick one and simply spend the CPU time to populate
the store by building packages from source. Some increased coverage could
be had by exploiting the global AFS namespace. CVMFS is becoming more
prevalent and with it another common convention for mount points is pos-
sible. Both provide a delivery mechanism although that is redundant with
the one that Nix also provides.

The other solution is to use the functionality of PRoot which is a user-
level chroot container mechanism. It is a light weight way to e�ectively
produce a "virtual" mount in the context of a single job. The globally
/nix mount can then be provided even if it may reside in a user's home
directory, or a group location or otherwise not directly mounted. This virtual
mount is achieved through some intercepted system calls and so some small
performance overhead is su�ered. Quantifying this overhead would be a
necessary task to accepting this otherwise good solution.

2.1 Issues with existing HEP build systems

Some software is resistant to producing Nix packages. Because Nix is de-
signed to build from source any software that is di�cult to build from source
is resistant to using in a Nix based system.

Of some small importance to HEP is proprietary, binary-only packages.
To deal with this, the "source" of the build is the provided binaries. Nix
has developed PatchELF to rewrite compiled-in paths to match the package

store path, allowing the result to be truly relocatable.
More problematic are existing large, important software projects which

have grown intricately intertwined with local computing infrastructure and
installation patterns. An example is the UPS/cetbuilttools based software

5

http://proot.me/


largely developed at Fermilab for US HEP Intensity Frontier experiments.
It is e�ectively not packages are not possible to build these package from
"�rst principles" and instead they require, down to their low-level package
build con�guration and source code, intricate intertwining with the end-user
environment management system (UPS). As a consequence, they are built
for a small number of OS platforms and can only be built for a Nix-based
system after some signi�cant e�ort and buy-in by Fermilab.

3 Plan for a Prototype

To determine if Nix can be used in a practical sense in HEP, some prototyping
is the �rst plan of action. The pat to this is:

1. Use the PRoot approach to provide /nix.

2. Work on package speci�cation for common HEP packages, starting
with ROOT2.

3. Include releases of experiment-level package.

4. Develop methods and helper tools to develop on experiment packages.

4 See also

� notes on existing ROOT5 packaging

� notes creating new ROOT6 packaging

4.1 Links

� http://christopherpoole.github.io/My-workflow-for-adding-packages-to-nixpkgs/

2Someone has already packaged a recent ROOT 5 for Nix but its build happens to be

failing at the time of writing.

6

./root5.org
./root6.org
http://christopherpoole.github.io/My-workflow-for-adding-packages-to-nixpkgs/

	Nix in a Nut Shell
	The Nix Package Store
	User Environment
	Package Definition

	Impedance mismatches between Nix and HEP
	Issues with existing HEP build systems

	Plan for a Prototype
	See also
	Links


